首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80874篇
  免费   4095篇
  国内免费   7150篇
  2023年   754篇
  2022年   906篇
  2021年   1410篇
  2020年   1667篇
  2019年   2982篇
  2018年   1958篇
  2017年   1654篇
  2016年   2030篇
  2015年   3173篇
  2014年   4157篇
  2013年   5687篇
  2012年   3537篇
  2011年   4878篇
  2010年   3588篇
  2009年   3613篇
  2008年   3870篇
  2007年   4100篇
  2006年   3730篇
  2005年   3270篇
  2004年   2714篇
  2003年   2403篇
  2002年   2116篇
  2001年   1714篇
  2000年   1509篇
  1999年   1479篇
  1998年   1327篇
  1997年   1160篇
  1996年   1046篇
  1995年   1307篇
  1994年   1238篇
  1993年   1196篇
  1992年   1181篇
  1991年   985篇
  1990年   915篇
  1989年   874篇
  1988年   851篇
  1987年   833篇
  1986年   548篇
  1985年   979篇
  1984年   1364篇
  1983年   988篇
  1982年   1344篇
  1981年   952篇
  1980年   955篇
  1979年   895篇
  1978年   521篇
  1977年   421篇
  1976年   344篇
  1975年   264篇
  1973年   265篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
101.
《Cell》2021,184(17):4531-4546.e26
  1. Download : Download high-res image (291KB)
  2. Download : Download full-size image
  相似文献   
102.
Liquid-liquid phase separation (LLPS) of proteins is involved in a growing number of cellular processes. Most proteins with LLPS harbor intrinsically disordered regions (IDR), which serve as a guideline to search for cellular proteins that potentially phase separate. Herein, we reveal that oligomerization lowers the barriers for LLPS and could act as a general mechanism to enhance LLPS of proteins domains independent of IDR. Using TDP43 as a model system, we found that deleting its IDR resulted in LLPS that was dependent on the oligomerization of the N-terminal domain (NTD). Replacing TDP43′s NTD with other oligomerization domains enhanced the LLPS proportionately to the state of oligomerization. In addition to TDP43, fusing NTD to other globular proteins without known LLPS behavior also drove their phase separation in a manner dependent on oligomerization. Finally, we demonstrate that heterooligomers composed of NTD-fused proteins can be driven into droplets through NTD interactions. Our results potentiate a new paradigm for using oligomerization domains as a signature to systematically identify cellular proteins with LLPS behavior, thus broadening the scope of this exciting research field.  相似文献   
103.
104.
Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2fl/fl;Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2fl/fl;Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2fl/fl;Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.  相似文献   
105.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   
106.
Abstract

In this paper, we describe a series of laboratory experiments which quantify the rate of Cr6+ reduction by Fe0. The main goal of these experiments was to determine the removal efficiency of Cr6+ by iron. The results indicate that Fe0 reduces Cr6+ to Cr3+ under alkaline and slightly acidic conditions. The removal efficiency rises with an increase of the initial concentration of Cr6+ (1 mg/L to 10 mg/L) when the quantity of Fe0 is stable. The removal efficiency increases as the quantity of Fe0 is raised when other conditions are constant. The removal efficiency would not be affected by other inorganic ions unless they were present at very high concentrations. When the initial concentration Cr6+ is 10mg/L and pH is 6.5–7.7, the final concentration of Cr6+ in effluent is less than 0.05 mg/L and the total Fe is less than 0.3 mg/L in effluent.  相似文献   
107.
We have demonstrated before that exposure of neuronal cultures to poisoning by iodoacetic acid (IAA) followed by “reperfusion” (IAA-R insult), results in severe cytotoxicity, which could be markedly attenuated by prior activation of the adenosine A1 receptors. We also have demonstrated that adenosine activates a signal transduction pathway (STP), which involves activation of PKCε and opening of KATP channels. Here, we provide proof for the involvement also of phospholipase C (PLC) in the neuronal protective adenosine-activated STP. R-PIA, a specific A1 adenosine receptor agonist, was found to enhance neuronal PLC activity and protect against the IAA-R insult. The PLC inhibitor U73122, abrogated both R-PIA-induced effects. These results demonstrate that activation of PLC is a vital step in the neuronal protective adenosine-induced STP.  相似文献   
108.
Splicing and alternative splicing in rice and humans   总被引:1,自引:0,他引:1  
Rice is a monocot gramineous crop, and one of the most important staple foods. Rice is considered a model species for most gramineous crops. Extensive research on rice has provided critical guidance for other crops, such as maize and wheat. In recent years, climate change and exacerbated soil degradation have resulted in a variety of abiotic stresses, such as greenhouse effects, lower temperatures, drought, floods, soil salinization and heavy metal pollution. As such, there is an extremely high demand for additional research, in order to address these negative factors. Studies have shown that the alternative splicing of many genes in rice is affected by stress conditions, suggesting that manipulation of the alternative splicing of specific genes may be an effective approach for rice to adapt to abiotic stress. With the advancement of microarrays, and more recently, next generation sequencing technology, several studies have shown that more than half of the genes in the rice genome undergo alternative splicing. This mini-review summarizes the latest progress in the research of splicing and alternative splicing in rice, compared to splicing in humans. Furthermore, we discuss how additional studies may change the landscape of investigation of rice functional genomics and genetically improved rice. [BMB Reports 2013; 46(9): 439-447]  相似文献   
109.
The molecular mechanisms that ensure the stability of proteolytic proteins are discussed. The autolytic pathway of protease degradation is emphasized. Experiments aimed at increasing the thermal stability of thermolysin-like metalloproteases are comprehensively described.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号